

What's New in R16

Version: R16

www.moldex3d.com

CoreTech System Co., Ltd. | Copyright © 2018 Moldex3D. All rights reserved.

Supported Platforms

- > Moldex3D supports Windows 64-bit platform for all purposes such as pre-processing, solving and post-processing, and Linux platform is supported as calculation resource
- > Moldex3D Mesh R16 for Rhino5 64-bit platform only

Platform	OS	Remark
Windows / x86-64	Windows 10 family Windows 8 family Windows 7 family Windows Server 2008 R2 Windows HPC Server 2008 R2 Windows Server 2012 Windows Server 2016	Moldex3D R16 is certified for Windows 10
Linux / x86-64	CentOS 6 family CentOS 7 family RHEL 6 family RHEL 7 family SUSE Linux Enterprise Server 11 SP2	Linux platform is used for calculation resource only. Moldex3D LM, Pre-processor and post-processor do not support Linux platform

* Moldex3D LM server supported platform will switch to Windows 64-bit OS next official release in 2019 and R16 LM is the last version that supports Windows 32-bit OS

Moldex3

- > Moldex3D R16
 - Remove sub-version number known as ".0" in the official product name
- > Foam Injection Molding (FIM)
 - Rename the application type which is previously known as Microcellular Injection Molding (MCIM)
- > Molten Core
 - Rename result item in filling, packing and cooling analysis which is previously known as melting core
- > Joint Type
 - Rename the term for the junction between two curves in runner or cooling channel which is previously known as node type

Terminology Definition

- > Clamping Force Centroid
 - The clamping force centroid shows the center of the clamping force at the moment of peak
- > Pin Movement
 - New capability in advanced hot runner (AHR) module to simulate pin movement with profiled speed setting

Announcement

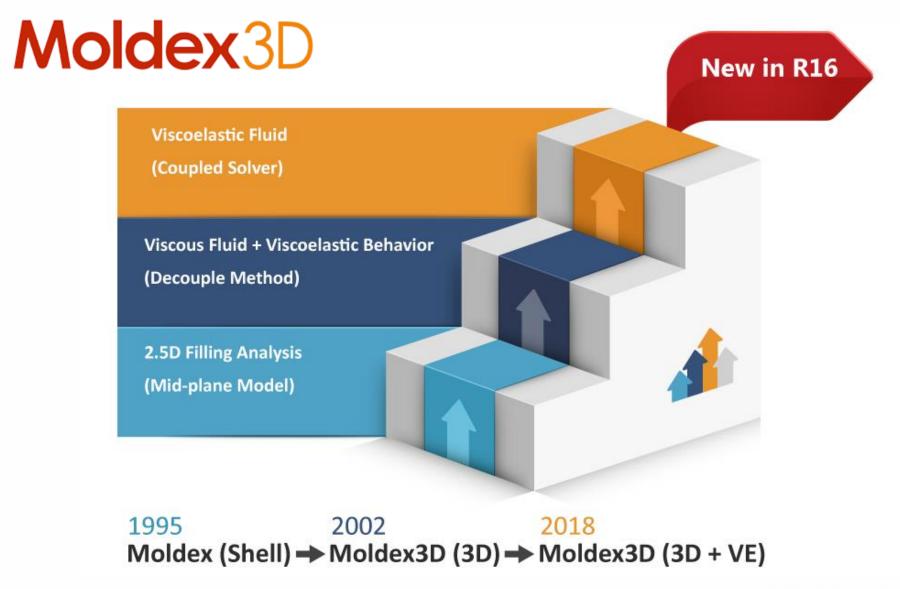
- > New License Architecture
 - The lighter and flexible new R16 license is implemented to make a better user experience
- > Moldex3D Project Files
 - Moldex3D eDesign project is switched from *.mvj to *.m3j that unify the previously two 3D projects, eDesign and Solid, to be only one single file extension
- > Moldex3D 64-bit LMSR
 - Moldex3D LMSR application known as Moldex3D License-Admin is going to switch the supported platform to 64-bit Windows OS and plan to terminate 32-bit program next official release in 2019

Moldex3D R16 Highlights

- > Coupled VE-Flow Analysis
- > Full Moldbase Non-matching Technology
- > Boost Design Verification Productivity
- > Long Fiber Prediction Achievement
- > Simulation Workflow Automation Tool

More Enhancements in Moldex3D R16

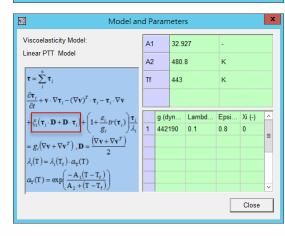
- > More Enhancements in Solver
- > More Enhancements in Pre-processor
- > More Enhancements in UI
- > More Enhancements in Solution Add-On
- > More Enhancements in Moldex3D Studio (Beta)



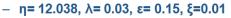
Coupled VE-Flow Analysis

New Generation Viscoelastic Flow Solver

- > Fluid Analysis with Coupled VE Technology
 - The viscoelastic (VE) character of plastics is taken into account and coupled during the molding simulation
 - Upgrade kernel from viscous fluid to viscoelastic fluid to simulate such phenomena as die swell, jetting and buckling
- > Benefit
 - Improved optics and warpage prediction
 - Pioneered analysis technology of Viscoelastic Fluid
 - One step further to explorer the tricky issues such as ear flow,
 tiger stripe and more...


Core Technology Revolution in Solver

Improve for Complete PTT Model

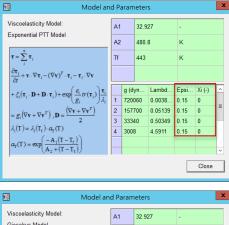

- > Enhance flow-induced residual stress prediction
 - Second Normal Stress Coefficient ψ₂

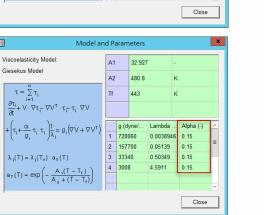
Model an	d Pa	aram	neter	s			X	
Viscoelasticity Model:		A1 32.		32.927		-		
Exponential PTT Model	A2		480.8 443		к	к к		
$\tau = \sum_{i}^{n} \tau_{i}$	Tf				к			
$\frac{\partial \mathbf{\tau}_i}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{\tau}_i - (\nabla \mathbf{v})^T \cdot \mathbf{\tau}_i - \mathbf{\tau}_i \cdot \nabla \mathbf{v}$								
+ $\left[\xi_i (\mathbf{\tau}_i \cdot \mathbf{D} + \mathbf{D} \cdot \mathbf{\tau}_i) + \exp\left(\frac{s_i}{g_i} tr(\mathbf{\tau}_i)\right) \frac{\mathbf{\tau}_i}{\lambda_i} \right]$		g (d	yn	Lambd	Epsi	Xi (-)	^	
	1	720	060	0.0038	0.15	0	=	
$= g_i (\nabla \mathbf{v} + \nabla \mathbf{v}^T), \mathbf{D} = \frac{(\nabla \mathbf{v} + \nabla \mathbf{v}^T)}{2}$	2	157	700	0.05139	0.15	0	=	
4	3	3334	40	0.50349	0.15	0	H	
$\lambda_i(\mathbf{T}) = \lambda_i(\mathbf{T}_f) \cdot \boldsymbol{a}_{\mathbf{T}}(\mathbf{T})$	4	300	3	4.5911	0.15	0		
$a_{\mathrm{T}}(\mathrm{T}) = \exp\left(\frac{-\mathrm{A}_{1}(\mathrm{T}-\mathrm{T}_{\mathrm{f}})}{\mathrm{A}_{2} + (\mathrm{T}-\mathrm{T}_{\mathrm{f}})}\right)$								
$\left(\mathbf{A}_{2} + (\mathbf{T} - \mathbf{T}_{f})\right)$							×	
,						Close		

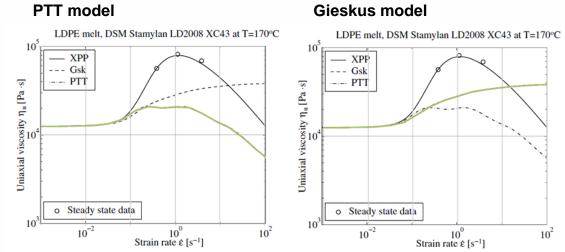
Material Functions of Complete PTT Model

> Comparison with analytical solution for steady simple shear flow

> Reference

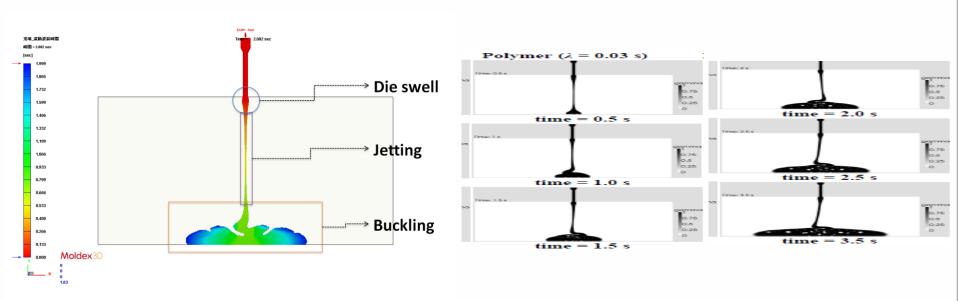

3


 Manuel A. Alves, Fernando T. Pinho, *Paulo J. Oliveira*, "Study of steady pipe and channel flows of a single-mode <u>Phan-Thien</u>-Tanner fluid", J. Non-Newtonian Fluid Mech. 101 (2001) 55–76


Moldex3D

Support Multi Mode for Non-Linear Parameters

- > Non-linear parameters of VE property set by different mode
 - Allow more fitting capacity for fluid VE, such as fitting elongational viscosity
 - Supported model: Linear PTT, Exponential PTT and Giesekus



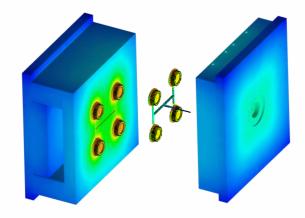
Comparison of elongational viscosity to reference

Enhance Flow Simulation with Viscoelastic Effect

- > Viscoelastic free-surface effects
 - Die swell
 - Jetting
 - Bucking

Time-series animation of melt front time

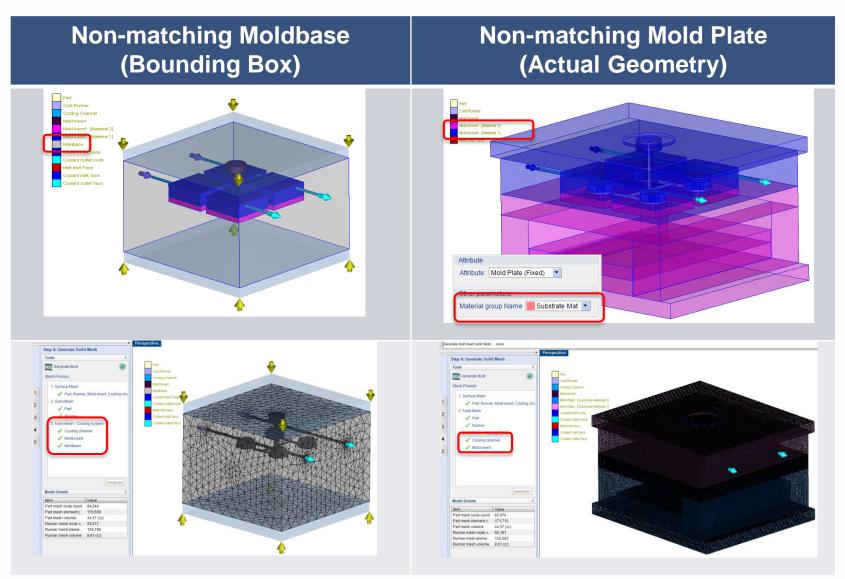
Simulation result from Literature

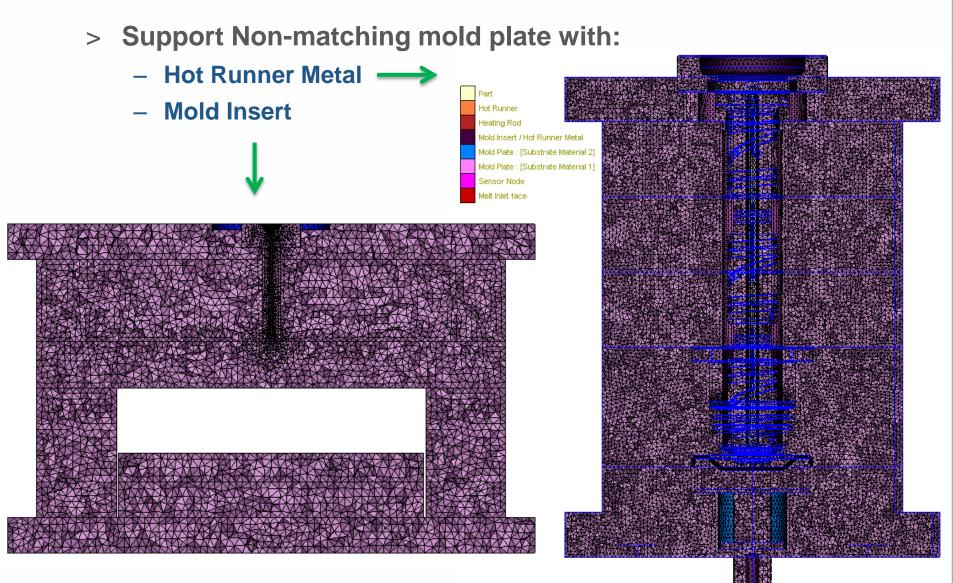

Ref. : J. L. Favero, "Viscoelatic fluid analysis in internal and in free surface using the software OpenFOAM

Full Moldbase Non-matching Technology

Allow Full Moldbase with Non-matching Faces

- > Support complete moldbase components
 - All moldbase components are fully supported to be non-matched for standard solid cool approach
 - Provide new attributes, Mold Plate (Movable) and Mold Plate (Fixed) for detailed moldbase modeling
- > Benefit
 - To assign different mold plate materials individually and visualize the temperature of parting plane
 - To reduce effort to generate solid moldbase mesh for better resolution and accurate prediction

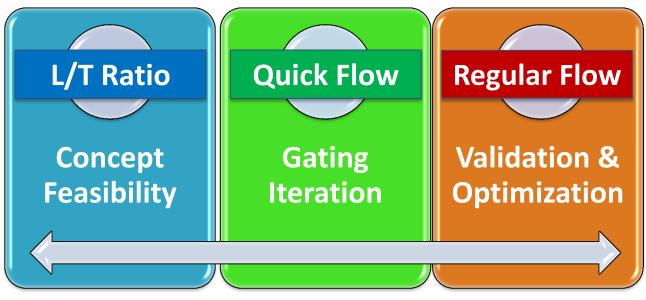



New Generation Non-matching Technology

	Non-matching	Non-matching	Non-matching
	Mehs in R14.0	Mesh R15.0	Mesh in R16
Part Insert	V	V	V
Mold Base System	Not Supported	- Cooling Channel - Heating Rod - Moldbase	 Cooling Channel Heating Rod Moldbase Mold Insert Mold Plate (New Attribute)
Mold Base	Auto-grid	Solid Mesh	Solid Mesh
Mesh	(Fast Cool)	(Standard Cool)	(Standard Cool)

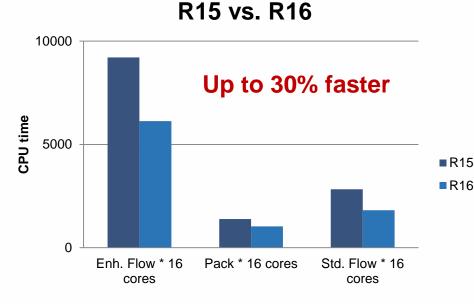
Non-matching Moldbase vs. Non-matching Mold Plate

Non-matching Model with Other Components



Boost Design Verification Productivity

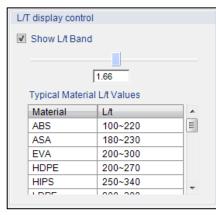
Boost Design Verification Productivity

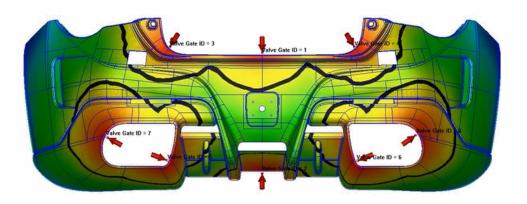

- > Various approaches for different design stages
 - L/t Ratio: To obtain the filling-like pattern in seconds Enhanced
 - Quick Flow: Accelerated flow analysis completed in minutes
 - Regular Flow: Enhanced calculation performance Enhanced
- > Benefit
 - Get the best analysis productivity according to the situation with different methods which adopted different approaches

New

Enhancements in Calculation Efficiency

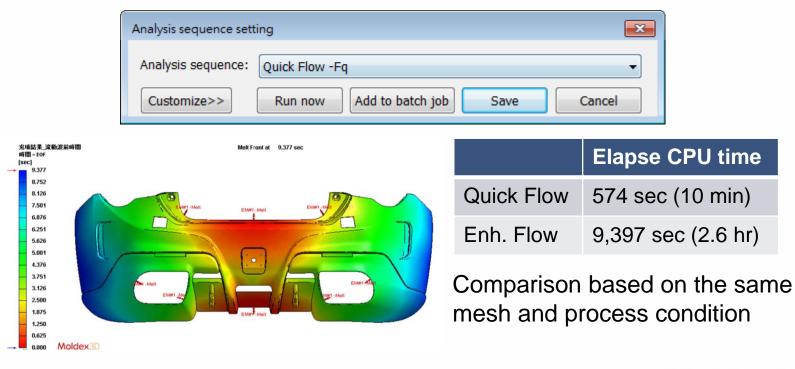
- > Up to Better calculation performance
 - Improved data structure for higher accessing efficiency
 - Improved efficiency for matrix solver
 - Improved data transferring efficiency in parallel computing
- > Benefit
 - Better leverage the computation resource before hardware investment




*. A case with element number= 4,813,180

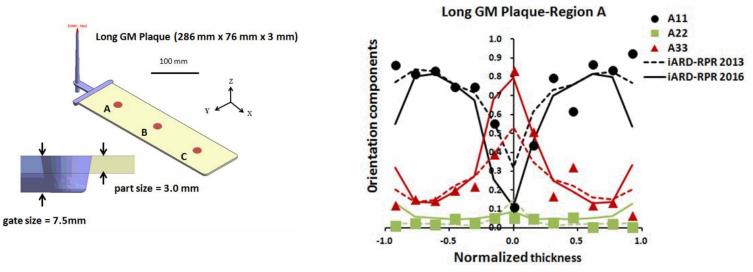
Enhancements in L/t Ratio

- > Verify ideas instantly
 - Upgraded UI of L/t function for better user experience
 - Improved kernel is for better result and display performance
 - Typical material L/t value is provided as reference

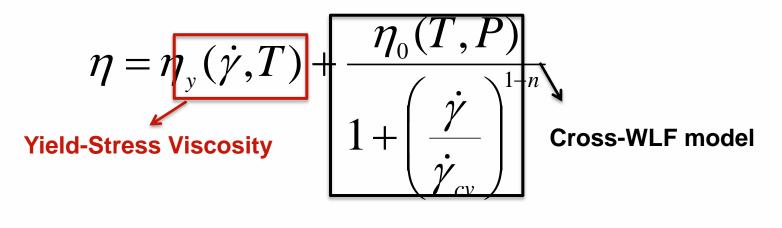


New Analysis Sequence – Quick Flow

- > New analysis sequence item
 - One set of fixed solver parameter is imbedded when Quick Flow Fq selected
 - A special analysis for the model that contains gate design only
 - Speedup the iteration in gating design verification for big parts



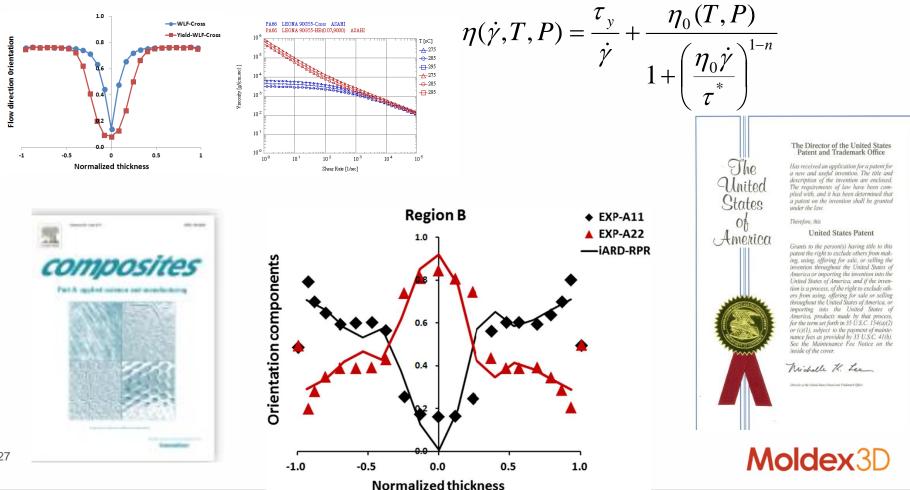
Long Fiber Prediction Achievement


Long Fiber Prediction

- > Improved Fiber Orientation Predictions
 - To capture broader core region of the fiber orientation structure for fiber-filled parts in the injection molding process
 - Apply Cross-WLF Viscosity model with consideration of Herschel-Buckley Yield-Stress

Journal Publisher: Polymer Composites 2017

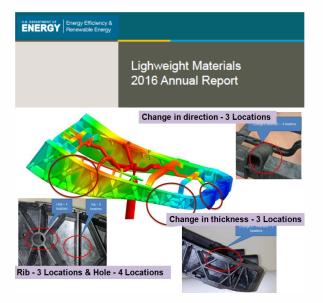
Adding Herschel-Buckley Yield-Stress to Cross-WLF Viscosity model


$$\eta_{0} = D_{1} \exp\left(\frac{-A_{1}(T - T_{c})}{A_{2} + (T - T_{c})}\right)$$
$$T_{c} = D_{2} + D_{3}P \quad A_{2} = \widetilde{A}_{2} + D_{3}P$$

Herschel-Buckley Yield-Stress Viscosity with respect to temperature

$$\eta_{y}(\dot{\gamma},T) = \frac{\tau_{y0} \exp(\frac{T_{y}}{T})}{\dot{\gamma}}$$

Contribution of US Patent and Journal Paper


> This yield stress viscosity is considered to improve orientation prediction of core region that has been applied in US Patent 2016 and published in Journal – Composite A 2017

27

Experimental Validation

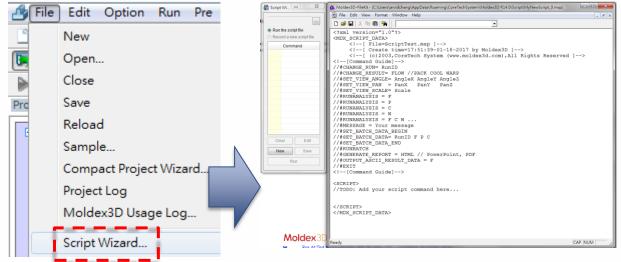
- > Seatback
 - Polyamide with 40% CF
 - Most (8/9) predictions satisfied 15% validation criteria

Location	Moldflow	Moldex3D	Experiment	Moldflow Prediction Deviation (%)	Moldex3D Prediction Deviation (%)
Direction Change 1	0.82	0.57	0.75	8.9	24.2
Direction Change 2	0.72	0.55	0.62	16.4	11.1
Direction Change 3	0.58	0.62	0.63	8.0	2.5
Thickness 1	0.96	0.76	0.72	32.7	5.1
Thickness 2	0.96	0.75	0.69	39.8	9.2
Rib	0.98	0.71	0.77	27.4	8.2
Flat Mutual Point	0.95	0.71	0.67	41.2	5.5
Hole 1	0.90	0.70	0.79	13.7	11.2
Hole 2	0.89	0.70	0.78	13.1	10.2

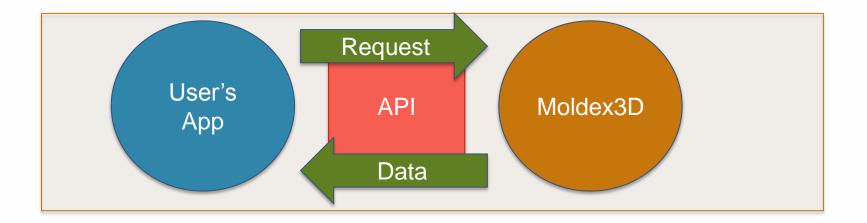
Model – Experiment Comparison of First Eigenvalue of Second Order Orientation Tensor for Polyamide with 40% CF Molded with Low Back Pressure and Slow Fill Speed

Source: US DOE Plan 2017

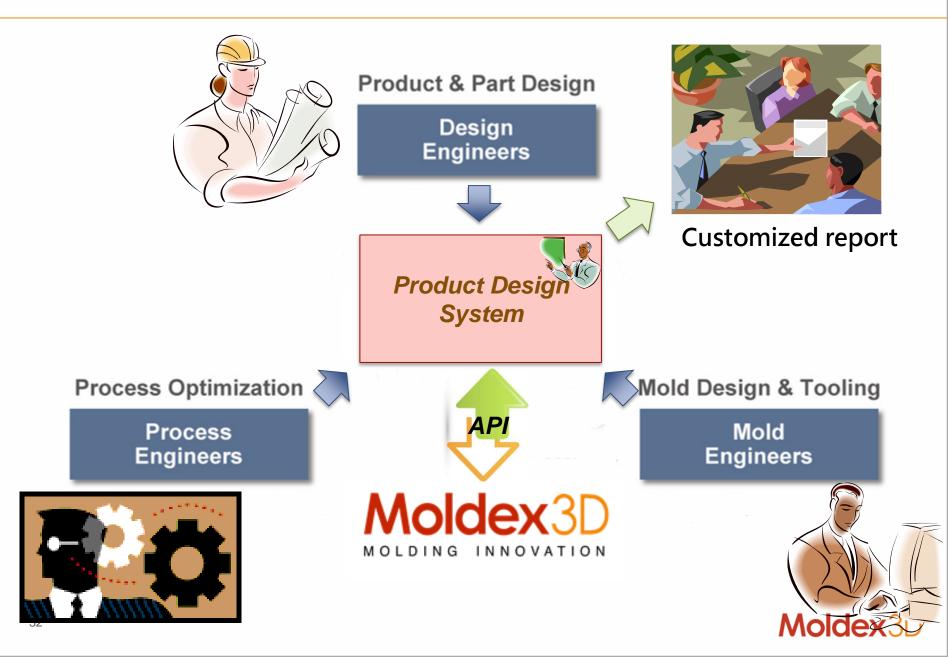
Moldex3D


8/9 (89%) achievement

Simulation Workflow Automation Tool

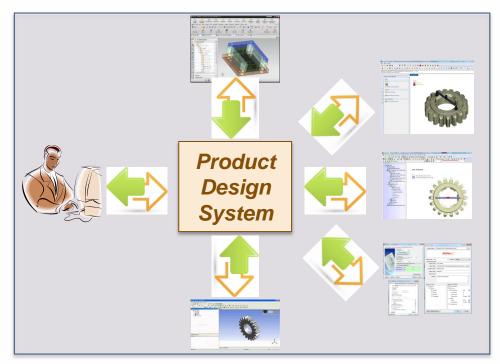

Advanced Script Wizard

- > Embedded function in Moldex3D Project
- > No additional license is required
- > Available functionality:
 - Switch Run
 - Execute Analysis
 - Output Report
 - Output Max, Min, Avg and SD from the results of F/P/C/W



Moldex3D API (Application Programming Interface)

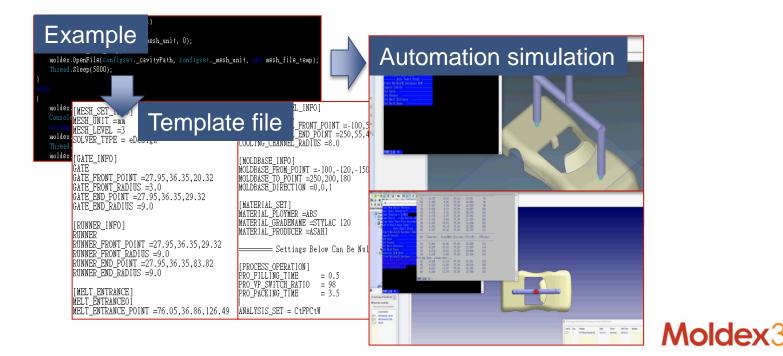
- > Moldex3D API is in DLL format and compatible with C#
- > Moldex3D API license is required
- > Available functionality:
 - Pre-processor
 - Post-processor
 - Analysis setup application
 - Report customization



Moldex3D API (Application Programming Interface)

API Scenario – Consistent User Interface

- > Construct a consistent user interface in product design
- > The system communicate to Moldex3D via API tools
 - Can customize own design workflow
 - Can Integrate with design optimization tools
 - Can reserve key technology
 - Can shorten users' learning curve



API Scenario – Standard Analysis Procedure

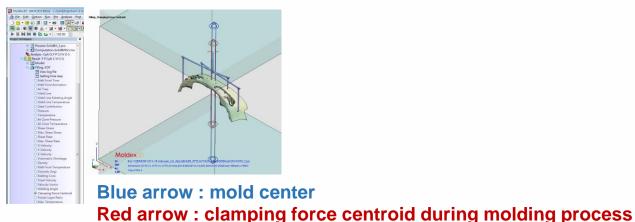
- > Construct an automatic simulation environment
- > There are standard design rules

34

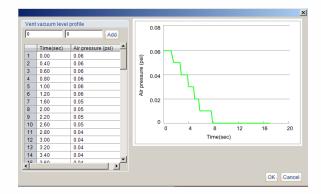
- Specify default parameter via template file
- Automation simulation from meshing, project setup, solving to report generation with single click
- Avoid human error with Standardized analysis process

More Enhancements in Solver

Advanced Valve Gate Control


- > Totally 6 control types provided
 - <u>Three additional control types</u>: Fill volume, Timing (after V/P Switch) and Flow front (by hot runner tip)
 - Support mixed type for different control points or valve gates
- > Improved usability for control setting
 - Add new option to shut off all valve gates automatically at end of packing in default
 - Initial status can be specified to avoid any misunderstanding

anced Setti	ng					?
alve Gate	Hot Runner Co	ontroller Setting	ScrewPlus	Mold Bo	undary	Conditio 🔹
✓ Shut off a	II valve gates a	automatically a	at end of packin	g		
Valve gate	Туре	Control point	Mesh node ID	Value	Unit	Action
#1 (ID:1)	-	2	-	-	-	-
	Initial status	1-1	-	-	-	Open 💌
	Timing 👻	1-2	-	0	sec	Open 💌
#2 (ID:2)	Timing Flow front (by node) Fill volume		-	-	-	-
			-	-	-	Open 💌
#3 (ID:3)		Timing (after V/P switch) Flow front (by hot runner tip)		-	-	-
	Ram position		_	_	_	Open 🔻

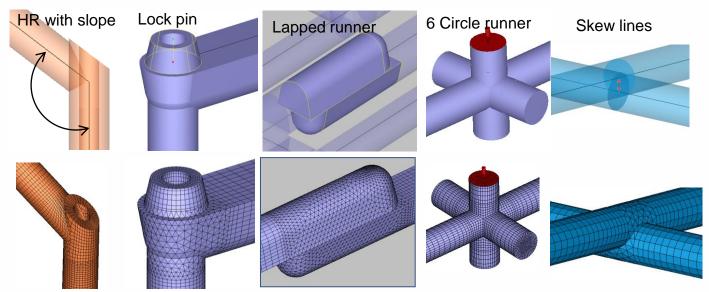


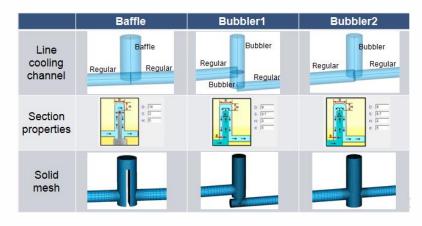
Advanced Flow to Cavity Consideration

- > Show Clamping Force Centroid
 - Calculate clamping force centroid all the time and the result indicates the centroid at the moment of clamping force peak

- > Allow tabulated Venting Profile for Detailed air Vent Setting
 - Support vacuum level profile for venting analysis

Additional Capability for Different Scenario

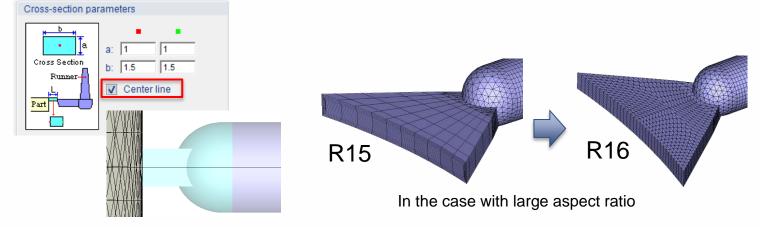

- > Resume Calculation
 - Extend the supported process setting mode to machine mode, so all standard process modes support resume
- > Multiple Time Steps Output
 - Support to output intermediate results at extend packing stage
- > Over-molding Process
 - Support to directly read DYNA-IN file to import the deformed prepreg as an insert for Moldex3D

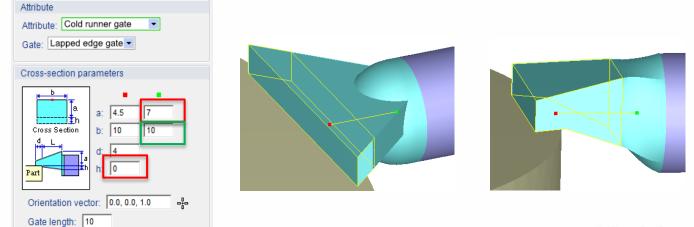

More Enhancements in Pre-processor

New Format Hexa-Based Solid Mesh

> New and enhanced runner/cooling joints

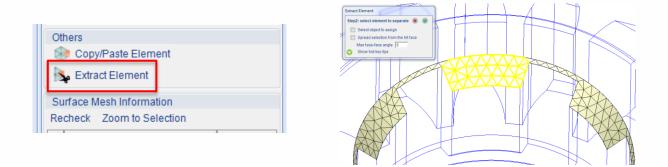
> Support hexa-based baffle and bubbler solid mesh




Flexible Gate Design with Hexa-Based Mesh

> Hexa-based Solid Mesh Kernel

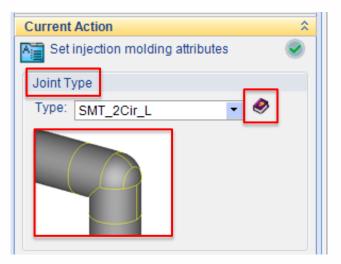
- Support center line and enhance mesh quality in edge/fan gate

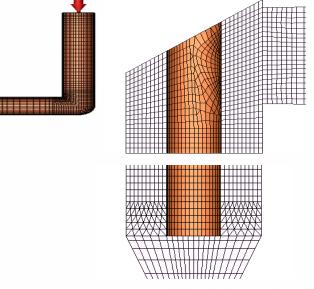


- Support more shapes and UI improvements in lapped edge gate

Enhanced BLM Kernel for Surface Mesh

- > Advanced Surface Mesh Preparation Tools
 - Transform functions like copy, move, rotate... are now activated in fix surface mesh mode
 - Extract element function is added in fix surface mesh mode




- > Improved Surface Mesh Generation Kernel
 - Surface/solid mesh generator kernel enhancement for better performance, quality and less element
 - Improve data transfer for symmetry volume calculation
 - Add moving surface BC in Set Face BC function

Enhanced BLM Kernel for Solid Mesh

- > Joint Type Function UI Enhancement
 - On-line help quick link provided
 - Change model color in the diagram
 - Utilize term Joint type, instead of Node type, for better understanding

- > Hot Runner Mesh Generation
 - Refined mesh in annular layer
 - Automatic solid mesh generation for stroke and for pin movement simulation

Enhanced Material Wizard with New Models

- > Add new PvTC model: Two domain modified Tait
 - Extended from Modified Tait Model (2) to consider conversion variation effect
- > Add new viscosity model: Cross CastroMacosko Model (1)
 - Extended from Cross CastroMacosko model to observe increased viscosity with low shear zone
- > Enhance Material Wizard Usability:
 - Modify history, information resource, search window size

Expanded Modeling Database

- > New and Updated Material to Database
 - 31 thermoplastic materials are newly added
 - COC(2), LCP(4), PBT(2), PPS(3), PA(19), PK(1)
 - 0 thermo-set materials are newly added
 - 11 material information is updated for properties including viscosity, PvT, Cp and K
- > New Injection Machine
 - Billion: 367 different machines from GM, HERCULE, SELECT series
 - Toshiba: 63 different machines from EC-S series

Moldex(

- > Machine Mode Process Setting
 - Enable Maximum injection pressure from Classic mode to Simple mode
 - Support Machine Interface for 百塑 machines

More Enhancements in UI

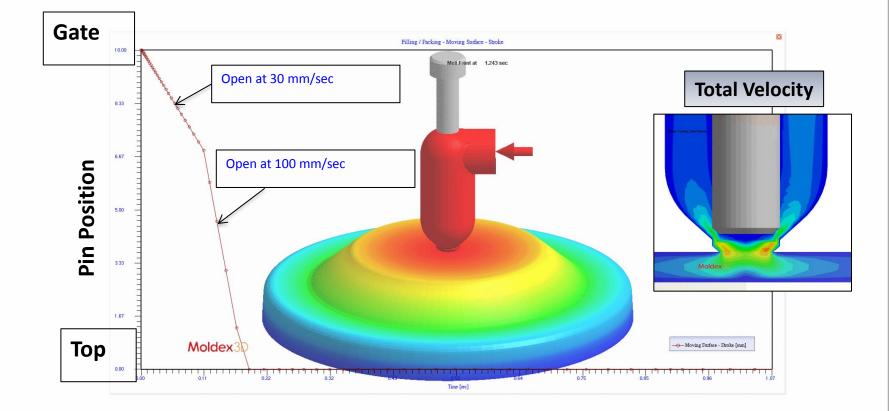
Enhance Analysis Post-processing Capability

- > [Fiber] Improve sketch performance of Fiber result item
- > [Cool] Allow to show node information on cooling channel by Selection
- > [Project] Allow history curve plotting for result in different time steps
- > [Project] Allow result plotting for thickness direction distribution with multiple time steps
- > [Project] Support model rotation with local coordinate system
- > [Project] Support clipping function together with warpage scale
- > [Project] Allow select function applied to part insert nodes

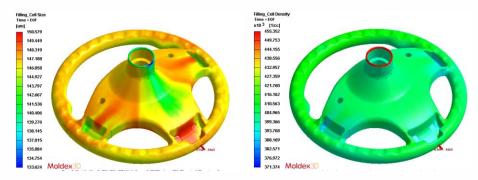
Allow More Flexibility for Project Management

- > [Project] Preserve remark for copied or exported run
- > [Project] Add option to show/hide run remark with XY Curve result
- > [Project] Allow rename when exporting run as a new project
- > [Project] Merge eDesign project (MVJ) into Solid (M3J)
- > [Report] Add customized summary page in PPT report

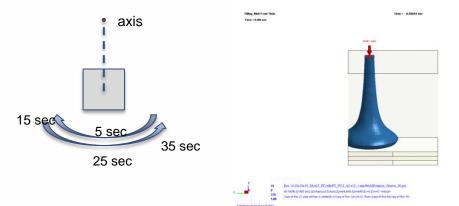
Enhanced User Experience for SYNC Simulation


- > Improved SYNC usability to run simulation on CAD
 - [SYNC] Add maximum injection pressure as process condition
 - [SYNC] Allow to skip project type selection
- > Renewed SYNC UI and workflow with CAD style
 - Include style of NX, Creo and SolidWorks
 - Include UI of Parting Direction, Symmetry Ratio, Report Wizard, Modify Runner, Analysis, Plotting setting

Enhancements in Solution Add-On


Advanced Hot Runner (AHR)

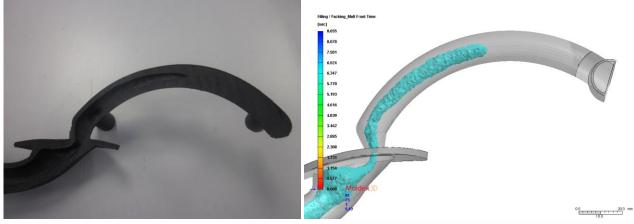
- > Pin Movement Simulation
 - Realistic approach to take valve pin position and movement into account of melt flow behavior simulation

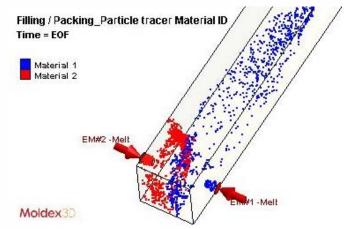


Chemical Foaming Molding (CFM)

- > Predict the distribution of Cell size & cell density
 - PU foaming process simulation provides new capability for estimating/calculating cell size and cell density

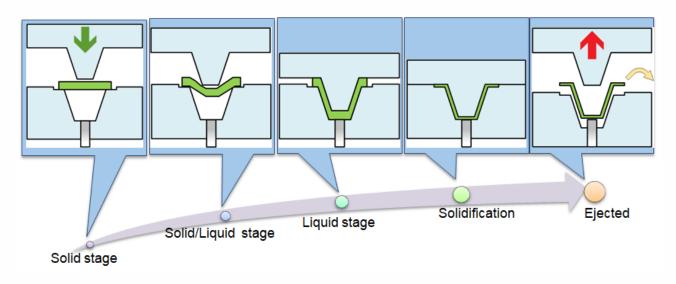
- > Support oscillating rotation simulation
 - Consider foaming front influenced by oscillating rotation effect





Fluid-Assisted Injection Molding (FAIM)

- > Water-Assisted Injection Molding (WAIM)
 - Support simulation of push-back, a technique process in full-shot process to avoid the switchover mark and material waste

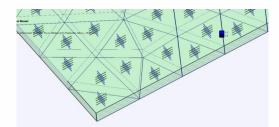


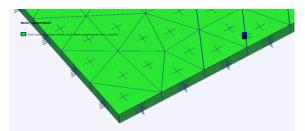
> Support Particle Tracer by materials for BilM & ColM

Compression Molding (CM)

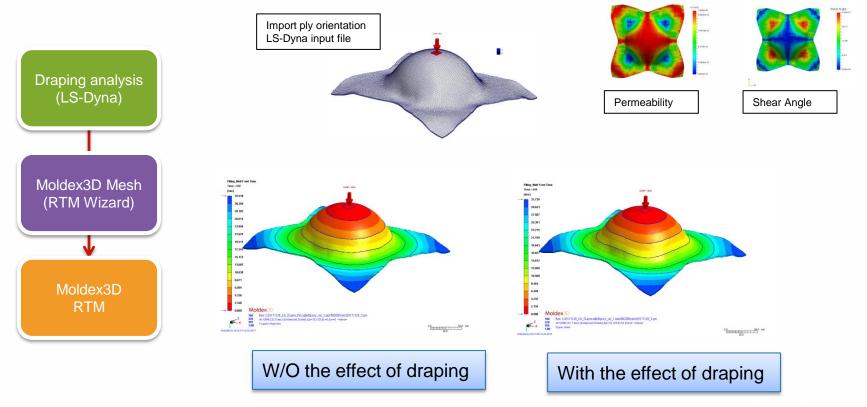
- > Enhancements in Charge Deformation from LS-DYNA
 - Numerical stability is improved in solid stage
 - Gravity effect & air convection in solid stage are considered
 - A format of LS-DYNA results is output in addition to LS file
- > Integration in 3rd Party Solver
 - Optimize the integration workflow to import initial charge shape, temperature distribution and fiber orientation data easier

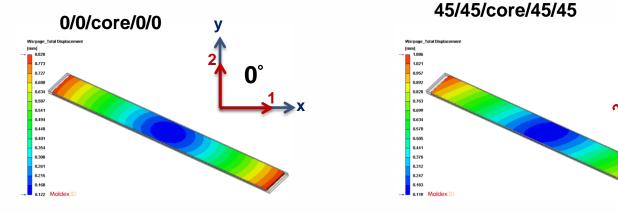
Resin Transfer Molding (RTM)


> RTM Pre-processor

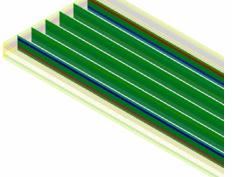

 Develop RTM wizard to help users to import draping data, generate mesh, and specify ply groups, BC and material groups

Material	Materia	*
	Ply_001_	_
Ply-2 [PlyMat2]:Ply(MDX_Test 002_Composition)	Ply_002_	Ε
Ply-3 [PlyMat3]:Ply(MDX_Test 001_Fabric)	Ply_001_	Ŧ
<	÷.	


- > Ply Material
 - Permeability property for each material group
- > Ply Orientation Display
 - Ply orientation for all elements or skin only


Resin Transfer Molding (RTM)

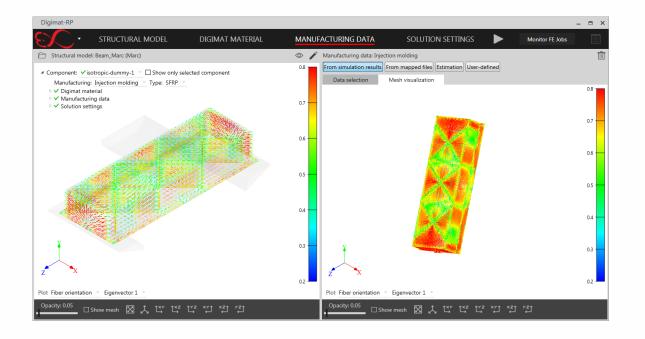
- > Draping Effect
 - The draping result can be imported into Moldex3D Mesh during mesh preparation and the analysis result will be affected by considering the draping effect



Resin Transfer Molding (RTM)

- > Warpage analysis
 - Support warpage with consideration of fiber mat orientation
 - Multi-layer composite structure property is calculated with multicomponent module

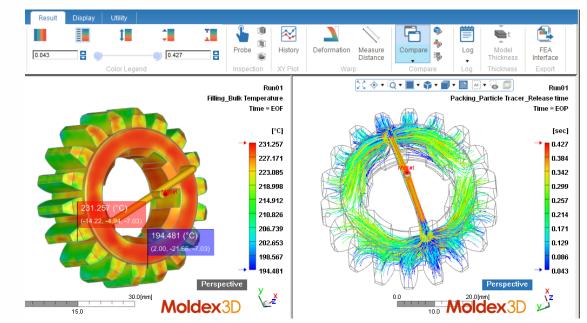
3D simulation to show the stress difference between layers in micro-structure.


Optics, Expert, FEA Interface

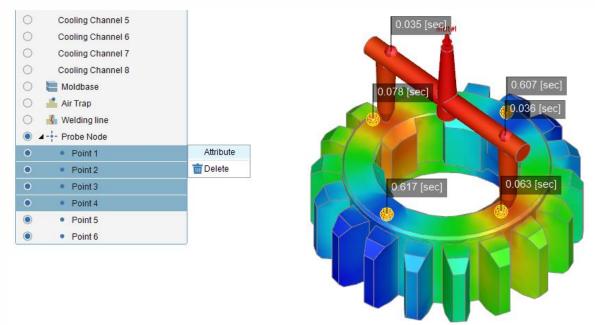
- > Optics simulation with Improve post-processing capability
 - Apply nm for Retardation result of Optics analysis
 - Support Clip, Slicing and IsoSurface function for Optics result
- > Expert flexible optimization analysis and task
 - Add option to stop all batch runs when one failed
 - DOE support matrix mode setting and analysis
 - Support optimization with PvT result of multiple sensor nodes
- > FEA Interface to allow more data transfer
 - 3D-to-Shell data mapping for ABAQUS
 - part insert temperature output

CADdoctor, Digimat-RP

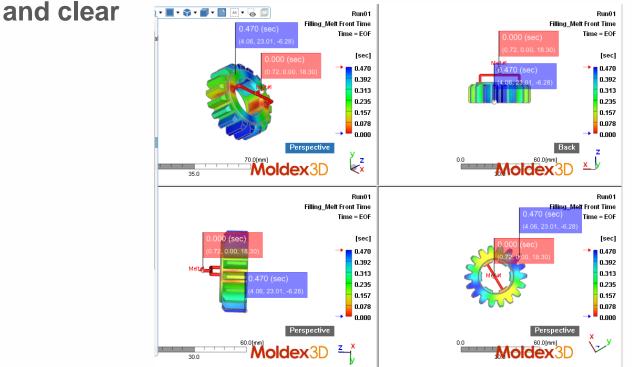
- > Moldex3D CADdoctor to support latest CAD version
 - Parasolid V29.1
- > Upgrade Digimat-RP from 2017.1 to 2018.0 in Moldex3D
 - Update for new user interface
 - Support weld line strength analysis



Enhancements in Moldex3D Studio (Beta)


Improved Usability of Analysis Preparation

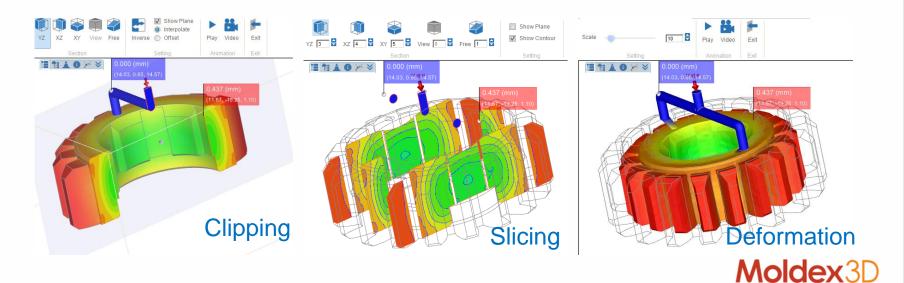
- > Improve Model Tree function for better group, appearance
- > Support multi-language UI (Language Packs) and unit switch
- > Allow customized platform setting for user preference
- > Support Max/Min tooltips in display window and color legend
- > Enhance Tree function and provide run setting summary


More Assistant Tools for Better Project Management

- > Add Animation Wizard and Video generator to manage animation display and video generation
- > Utilize Probe Node to replace Measure Node to display the local information of model and analysis result
- > Support Result Advisor and two-point distance measurement

More Assistant Tools for Better Project Management

- Support snapshot (Hot key: Ctrl+P) and multiple display window for different runs and results: sync of result items, legend range and view
- > Allow run management with function to copy, delete, export


Enhanced Simulation Capability

- > Support more functions such for Multi-Component Molding and FEA Interface modules
- > Support result plotting of history curve with multiple time steps and allow to add label and adjust range in XY Plot
- Support Cloud Computing and to launch Computing Manager
 before summiting jobs
- > Support Space Mouse, different screens and DPI scenario
- > Allow to import different format CAD files in the same time and continue the run setting with Project

Improved post-processing performance

- > Improve vector sketch efficiency for Fiber and Velocity result
- > Support to export PPT format report
- > Display scaled deformation for Warpage and Sink mark Result
- > Improve display efficiency on Clipping function
- > Display model thickness on part solid mesh entities

MOLDING INNOVATION

www.moldex3d.com CoreTech System Co., Ltd. | Copyright © 2018 Moldex3D. All rights reserved.