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Preface

Injection molding techniques have been developed over decades and well-applied
in automotive, 3C (Computer, Communication, and Consumer electronics), optics,
medical products, and in daily necessities, among other areas. Due to this long-
term development and widely ranging applications, the individual molding criteria
have been specialized in several industries to fit various product specifications and
innovative materials.

Many industries are producing novel plastic products, such as FRPs (fiber re-
inforced plastics) replacing metal to reduce weight while maintaining the struc-
tural strength of automotive parts. The unique appearance achievable from tech-
niques such as multi-component design of 3C products is more attractive than that
from the common design by conventional injection molding. The high turnover
rate in mobile products has raised the demand for plastic lenses so that the capacity
and profits of the optics industry are ensured as long as production stability of
high-precision-shaped lenses can be achieved in multi-cavity molding. Usually,
medical plastic products have a high added value, but they especially must pass
severe material certification standards at the primary stage, and dust-free or ster-
ile production may be necessary. As for daily necessities, although part dimen-
sional precision is not demanded as much as in other industries, there are still
molding issues to consider; for example, conformal cooling method might be eval-
uated in order to reduce the cycle time.

The increasing requirements and diversity of plastic products demand a shorter
time to market. However, much time can be spent in developing the procedures for
some products, from concept generation, design drawing, mold tooling and assem-
bling, trial-molding to mass production. “How can the procedures be shortened
using CAE (Computer Aided Engineering) tools?” then becomes a key question for
industry. The idea is to predict potential molding problems and defects by CAE
during the design stage, modify the design according to these results, and then
re-analyze until the best design is obtained. Since the 1970s, virtual trial moldings
have been implemented by computer using injection molding simulation CAE tools
to check whether the molding parameters are good enough for manufacture. These
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parameters are part design, gate design, runner layout, cooling layout, molding
materials, process conditions, and so on. From CAE, the optimized parameters can
be estimated efficiently and provided as the initial-guess settings for the real mold-
ing to cost down in time, manpower, material, and energy. To summarize, CAE is a
decades-proven design-verification tool for real applications of the injection mold-
ing process.

In addition to conventional injection molding, there are many innovative molding
processes that have appeared. Characteristics of lightweight parts, low clamping
force, and low shrinkage are noted in the G/WAIM (Gas-/Water-Assisted Injection
Molding) and MuCell® processes. With co-/bi-injection, multi-component or multi-
functional parts can be produced by one-shot molding. The compression operation
of ICM (Injection Compression Molding) provides a uniform packing mechanism
on a plastic melt that compensates the non-homogeneous packing of injection
molding. Metal or ceramic PIM (Powder Injection Molding) is especially adapted to
manufacture the green part of highly precise and complicated geometry products.
When using a hot runner system, the most important thing is accurate tempera-
ture control. Moreover, improvements in plastics molding techniques are not only
exhibited in injection processes, but also, for example, in consideration of the resin
curing reaction within the multi-substrate molding of an IC package, a process that
has evolved greatly.

Molding issues become more challenging and complicated with innovations in pro-
cesses and materials, which can lead to a longer time and higher cost in conditions
optimization. In particular, when fiber composites are involved, obtaining favor-
able fiber orientations and maintaining longer fiber lengths after processing are
extremely important goals, because the microstructures of the materials dominate
the product quality. In RTM (Resin Transfer Molding), the microstructures are re-
lated to the resin impregnation degree inside the continuous fiber mat or woven
roving. The involvement of the effects of surface tension, fiber deformation, and
resin curing reaction all make RTM process control more difficult. Fortunately,
CAE is nowadays available to simulate these new procedures and as a process inno-
vation tool.

From decades of experience in CAE assistance in molding troubleshooting, we
have found that processing knowledge is as important as software operation to
CAE users. To make a high-quality molded product, the total effects of part design,
mold design and manufacture, machine capability, and material properties must
all be taken into account and then integrated into the CAE tool to implement design
verification and conditions optimization wisely. Each of these definitely involves a
deep knowledge, whether in theory and/or empirical formula. When talking about
molding issues, plastics rheology and the designs of part and mold are especially
the key criteria since their interactions will dominate the material property varia-
tions inside the mold.
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At Moldex3D, as worldwide leaders in molding simulation software, we are not just
continuously enhancing CAE capability but also intend to help industry people
improve their molding-related abilities. The importance of training and instruction
has become strongly apparent to us. As a result, this book consists of plastics
molding theory, practical applications, and case studies intended to elaborate the
molding system and melt flowing behaviors in an easy-to-understand way. The
practical examples show how to use CAE to achieve design verification and process
innovation in conventional injection molding, G/WAIM, co-/bi-injection, foam in-
jection molding, PIM, RTM, and IC packaging. With this book, readers can effec-
tively learn molding simulation applications and its importance in molding indus-
tries.

The CAE case study exercises found in the book for execution in the Moldex3D
software can be downloaded from the Website: https://moldex3d.box.com/s/
zr6fvelvlhbidocx111jwd3wmxt4ooif, for which the QR code is as follows:

Maw-Ling Wang
Rong-Yeu Chang
Chia-Hsiang (David) Hsu
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Table 6.2 Polymer Type versus Clamping Force [3] (continued)

Resn ————— omessit—— Ltomes/omt

6.1.6 Material Viscosity and Flow Behavior

The basic principle for setting the injection speed and pressure in the filling stage
is that high speed and high pressure facilitate the filling to be finished in a short
time to avoid fast cooling of the melt, which would increase the flow resistance.
The reason for using a high pressure is to avoid a drop of injection speed due to
insufficient injection pressure, which may lead to deviation from the original
parameter setting.

When the plastic material is flowing, an internal pressure (counteractive force) is
generated by the flow resistance as the plastic is compressed. A faster pressure
rise denotes a higher flow resistance, and thus the pressure loss from flowing
through the part becomes higher. By increasing the melt temperature to reduce
the viscosity of the material, the flow resistance can be reduced, and a lower flow
resistance in the filling stage leads to a smaller increase of the internal pressure.

Possible causes for a rising flow resistance, leading to high internal pressure and
high pressure loss, are as follows: thinner thickness, long flowing distance, lower
mold/melt temperature, slower injection speed, and high viscosity.
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Because the flow resistance is proportional to the melt viscosity, it is still possible
to change the viscosity and reduce the flow resistance in the same mold and same
material through modification of the molding conditions. Polymer materials are
non-Newtonian fluids and hence their viscosity not only changes at different tem-
peratures but also depends on the shear rate.

To understand the influence of the shear rate on the viscosity of a plastic material,
it is necessary to interpret the implication of a viscosity curve of material. The
viscosity affects the flow resistance, and then the filling pressure, as well as the
specifications and capacity of machine required. The viscosity difference of the
plastic material between each region in the mold cavity also affects the pressure
transmission, the flow balance, and the follow-up packing pressure transmission,
which has a direct relationship to the mass and quality of the part.

Therefore, the quality control of the part is an important factor to understand the
relationship between viscosity variation and molding conditions of plastic materi-
als. The viscosity variation of polystyrene (PS) is shown as an example in Fig-
ure 6.36.

PS(Polystyrene)

10+ " " =TT "
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Low Shear rate area (10*1 sec'?) : Shear Thinning < Thermal Thinning
High Shear rate area (10+3 secl) : Shear Thinning ~ Thermal Thinning

Figure 6.36 Viscosity of polystyrene

In the low shear rate zone where the shear rate is 1.0 x 10! sec™! and the tempera-
ture is 200 °C, by increasing the temperature from 200 to 300 o, the viscosity is
reduced from 30,000 poise to 1500 poise. By increasing the shear rate from 1.0 x
10! sec™® to 1.0 x 102 sec™?, the viscosity can be reduced from 30,000 poise to
6000 poise. Therefore, the influence of the shear rate on the viscosity is relatively
smaller than the influence of the temperature.

In the high shear rate zone where the shear rate is 1.0 x 103 sec™! and the tempera-
ture is 200 °C, by increasing the temperature from 200 to 300 °C, the viscosity is
reduced from 1000 poise to 300 poise. By increasing the shear rate from 1.0 x
103 sec’! to 1.0 x 10* sec”!, the viscosity can be reduced from 1000 poise to
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200 poise. Therefore, the influence of the shear rate on the viscosity is close to but
slightly larger than the influence of the temperature on the viscosity.

Regarding various effects of viscosity, the viscosity curves of three different groups
of plastic materials are compared in Figure 6.37 to explore the sensitivity of viscos-
ity versus temperature and shear rate.
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Figure 6.37 Viscosity: (a) temperature sensitive, (b) shear rate sensitive, and (c) temperature
and shear rate sensitive

Figure 6.37(a) shows a bigger gap between each temperature curve, indicating a
significant effect on decreasing the viscosity by raising the temperature but an in-
significant effect on decreasing the viscosity by raising the shear rate, which shows
that the viscosity of the material is sensitive to temperature. Figure 6.37(b) shows
a smaller gap between each temperature curve, indicating an insignificant effect
on decreasing the viscosity by raising the temperature but a significant effect on
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decreasing the viscosity by raising the shear rate, which shows that the viscosity
of the material is sensitive to shear rate. Figure 6.37(c) shows a bigger gap between
each temperature curve and also the decrease of viscosity with the increase of
shear rate is significant, which shows that the viscosity of the material is sensitive
to both temperature and shear rate.

Figure 6.38 shows a comparison of the injection pressure under different melt tem-
peratures (250 and 280 °C) for polymethylmethacrylate (PMMA). As the melt tem-
perature rises, the viscosity of the material drops and thus leads to a decrease of
the flow resistance as well as the injection pressure. When the melt temperature is
250°C and the filling time is 1.0 sec, the injection pressure reaches 100 MPa;
when the melt temperature is 280 °C and the filling time is 1.0 sec, the injection
pressure reaches 70 MPa.

PMMA(Polymethylmethacrylate)
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Figure 6.38 Melt temperature versus injection pressure

Different materials have different viscous characteristics. The influence on the in-
jection pressure of three different plastic materials is compared in Figure 6.39. By
setting the same filling time at 1.0 sec, the injection pressure for polypropylene
(PP) is 32 MPa, and 28 MPa for polystyrene (PS), whereas polymethylmethacrylate
(PMMA) requires 100 MPa to complete the filling process. Furthermore, when the
filling time reaches 0.8 sec for PMMA, the pressure already hits the upper limit of
100 MPa, which indicates that the pressure control mode already kicks in and the
system cannot maintain the original fixed flow rate for filling.
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Figure 6.42 Consistency between CAE analysis and experiment in melt front time

The surface quality of an actual part can also be assessed through an analysis re-
sult. For example, by observing the surface quality of the injection-molded part as
shown in Figure 6.43, a significant mark defect is seen at the boundary between
the thickness of 0.7 mm and 1.0 mm in the center, where a considerable shear
stress difference also exists.
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Figure 6.43 Mark defect versus shear stress

As shown in Figure 6.44, the surface quality of the part can be improved by chang-
ing the thickness of the design. Figure 6.44(a) is the original design and Fig-
ure 6.44(b) is the revised one. The main change is to design a smooth thickness
transition area at the boundary where the thickness of 0.7 mm and 1.0 mm meet.
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Figure 6.44 Broaden the thickness transition area

From the packing result of shear stress distribution analyzed by CAE as well as the
picture showing the part surface, the frame-shaped distribution of shear stress in
the central area no longer exists, and the actual surface quality of the part is in-
deed significantly improved.

6.2.2 Flow Rate Effect on Injection Pressure of Laptop Product

Concerning the injection stroke setting, the runner stroke and the mold cavity
stroke are calculated respectively. The runner stroke can be converted from the
runner volume, and the mold cavity stroke can be estimated by using 60-90% of
the mold cavity volume. Figure 6.45 shows an example using Moldex3D to de-
scribe how a multi-step flow rate setting is configured (reference example). The
specifications are listed as follows:

Part model: D part of a laptop PC (bottom plate)
Part volume: 122.16 cm3

Part dimensions: 315 mm x 225 mm x 20 mm
Main thickness: 2 mm

Material: PC/ABS

Runner system: hot runner

Capacity of injection molding machine: 450 tons
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Figure 6.45 Product model

Figure 6.46(a) shows a single flow rate and Figure 6.46(b) illustrates a multi-step
flow rate.
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Figure 6.46 (a) Single flow rate and (b) multi-step flow rate

By examining the relationship of flow rate setting to injection pressure and shear
rate at the gate as shown in Figure 6.47(a), where the red line denotes a single flow
rate, while the blue line denotes a multi-step flow rate, it is found that a multi-step
flow rate is able to reduce pressure loss effectively. Also in Figure 6.47(b), where
the red line denotes a single flow rate, while the blue line denotes a multi-step flow
rate, a multi-step setting is able to reduce the shear rate at the gate as well.
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Figure 6.47 (a) Sprue pressure and (b) shear rate

B 6.3 CAE Case Study

Following the discussions of this chapter and the corresponding CAE verification
case, an exercise model, as illustrated in Figure 6.48, is provided in this section for
readers to practice CAE application in runner and gate design.

Eri#1 -telt

Figure 6.48 Case study sample

Please download the analysis files for CAE Case Study 6.3 from the following web-
site:

https://moldex3d.box.com/s/zr6fvc1vihbidocx 11 1jwd3wmxtdooif
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Then open the .m3j or .mvj file in Moldex3D and answer the questions below
according to the analysis results.

Questions:
1. Pre-analysis of the model

a) What is the maximum L/t of the case? If taking PA6 as the material, does
short shot occur? Why?

b) Where will be the filling ends and weld lines?
2. Comparison of different plastic materials

a) Run the simulations of flow analysis with “PA Ultramid 8202 BASF” and
“PC+ABS CYCOLOY C7410 SABIC(GE)”. Why is the sprue pressure of PC+ABS
much higher than that of PA? Try to explain the reasons with the comparison
function of material wizard.

b) What makes the differences in the simulation results of viscosity and shear
stress at EOF (end of filling) between PA and PC+ABS? Try to explain the rea-
sons with respect to material properties.

¢) Explain how the high-viscosity material affects the molding results, including
molding processes and product quality.

3. Comparison of different process conditions: filling time

a) The default filling time is 0.1 sec. Compare the sprue pressure results for
different filling times from 0.04 to 0.2 sec. Here we set a single flow rate pro-
file. (Hint: check the XY-plots of sprue pressure curves.)

b) Figure 6.49 shows the internal viscosity results of filling time of 0.04 and
0.2 sec. Why does the viscosity distribution differ with the filling time? (Hint:
check the temperature distribution.)

4. Comparison of different process conditions: flow rate

a) The default flow rate is three-segment profile. Compare the XY-plots of sprue
pressure curves of different flow rates with single- and three-segment pro-
files.

b) Compare the shear rate distributions at the gate of different flow rates with
single- and three-segment profiles (by clipping function).
5. Comparison of different process conditions: VP switch
a) The default VP switch is at 98% filling volume. Compare the XY-plots of sprue

pressure and clamping force curves of different VP switch points at 90%, 98%,
and 99% filling volume. Try to explain the reasons for the difference.

b) Compare the locations of weld line and welding temperatures. Try to explain
the reasons for the difference.
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6. Comparison of different wall thicknesses

a) Compare the XY-plots of sprue pressure and try to explain the reasons for the
difference.

b) Try to catch the melt front time result with the set perspective of 90, 0, 90 on
“view control panel” to show the filling difference caused by thickness change.

¢) Compare the shear stress distributions at EOF and try to explain what kind of
bad influence to the part might be caused by changing thickness.
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Figure 6.49 Internal viscosity results (by the clipping function with the plane of z= 1) at VP
switch for the filling time of (a) 0.04 sec and (b) 0.2 sec



276

9 Warpage Control

9.1.1 The Causes of Warpage

There are various reasons for warpage, including geometric factors such as part
design, insert effect, process conditions including pressure and temperature, and
material properties such as fibers and Pressure-Volume-Temperature (PVT) behav-
ior. In order to resolve warpage, identifying the cause(s) is critical. Normally a
fishbone diagram, as shown in Figure 9.5, is used to list all possible causes for
warpage, which then can be compared with the real case to narrow down the
source.

Runner design | Melt temp |
Packing pressure | Mold temp I
Packing time | Cooling system I

—

Pressure ][ Temperature ]

/ >——>

[ Part Insert ] [ Part design ][ Fiber orientation ]

Cooling difference | Thickness distribution | Melt advancement |

Stiffness difference Reinforcing structure Thickness distribution

Figure 9.5 Fishbone diagram for warpage troubleshooting

1. Material

The plastic properties affecting shrinkage and warpage include plastic type, de-
gree of crystallization (crystallization rate), and filler properties. Shrinkage behav-
ior varies between different plastic types. For example, polyoxymethylene (POM) is
a highly crystallized material and presents significant shrinkage after ejection.
Polypropylene (PP), on the other hand, has a relatively minor shrinkage. Amor-
phous polymers such as poly(methyl methacrylate) (PMMA) have the lowest
shrinkage rates. The crystallization rate is related to cooling. Nylon is a material
with a low crystallization rate compared to the short injection filling time. The
cooling is too fast for a high relative degree of crystallization, which leads to fur-
ther shrinkage even after mold release. Fillers (inorganic substances) are basically
rigid and do not shrink substantially, which makes them ideal for improving the
mechanical properties and lowering the shrinkage of the polymer matrix. How-
ever, the induced viscosity increase in the melt poses challenges to processing
with high filler content.
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2. Part Design

Regarding the design of parts and molds, as heat tends to accumulate in the center
area of the wall thickness, this area tends to shrink more after the packing pres-
sure is released. The constantly dropping temperature would cause volumetric
shrinkage in the original high-temperature areas. A single flat plate does not warp
as the shrinkage on both sides is the same; however, warpage may occur if ribs are
designed on one side. Usually, the ribs cause more shrinkage due to heat accumu-
lation, such that the plate then bends toward the rib side. In some cases, inclusions
such as glass fibers when properly aligned may reduce the rib-side shrinkage so
that the warpage direction is opposite to the unfilled one. In the following sections,
the mechanisms of how ribs, screw boss, and gussets affect warpage will be intro-
duced.

Inserts are normally made of metal, which is stiffer than plastic, and act as rein-
forcements. Usually, they decrease the warpage. In some cases, an asymmetric
shape of inserts may cause non-uniform shrinkage leading to warpage.

3. Mold Design

As for the mold design features, the gate location affects the packing effect in the
part, and an irregular pressure distribution would lead to non-uniform shrinkage
and cause warpage. How gates affect pressure distribution will be discussed later.

A good design of cooling channels effectively removes heat away from the part, and
also homogenizes the temperature. Warpage is less significant if the temperature
becomes uniform. But due to the spatial limitations of the mold (avoiding sliding
blocks and ejection pins), the arrangement of cooling channels is often less than
ideal. Also, the contact between the mold metal and mold mechanisms is unlike
one block of material and thus does not conduct heat so well. On the other hand,
some molds utilize high thermal conductivity metals such as beryllium copper to
better transfer heat from the hot areas to the cooling system. This allows a shorter
cycle time and provides a more uniform temperature distribution.

4. Process

Among all the molding process parameters, temperature and pressure are the
most important ones to affect warpage because they relate directly to material
shrinkage, i.e., PVT behavior. In addition, the faster the injection speed is, the
higher the pressure becomes and so the temperature becomes more uniform, as
the time it takes for a plastic material to flow from the gate to the end is shorter.

In the packing stage, the controllable parameters are packing pressure, packing
time, multi-stage packing, cooling time, and cooling rate. These are all critical fac-
tors that affect shrinkage and warpage. During the filling, packing, and cooling
stages of plastic molding, as the temperature and pressure keep changing and are
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distributed non-uniformly, the density also varies with time and among different
areas of the part, leading to non-uniform shrinkage eventually.

The injection molding process can be understood by the changing history of tem-
perature and pressure, the most important causes for part warpage. As shown in
Figure 9.6 and Table 9.1, the pressure rises in the filling stage from 1 to 4 along
with the occurrence of high packing pressure from 2 to 3 and shear heating from 3
to 4. The cooling stage is from 4 to 5, in which the pressure also decreases. A dy-
namic process like this changes the density throughout the whole process and
complicates the material shrinkage behavior.
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Figure 9.6 Pressure and temperature history of an injection molding process

Table 9.1 Stages of an Injection Molding Process

1-2 Plastic enters the barrel and is heated up quickly

2-3 Plastic heats up until melted fully while maintains constant temperature

3 Plastic enters the screw to be heated up by a shear friction

3-4 Injection molding at high speed. Severe shear friction causes even higher
temperature

4-5 Injection completes and the materials are cooled down through mold wall

5) Demolding

9.1.2 Material Effects

In addition to pressure, the molecular chain orientation also contributes to non-
uniform shrinkage in the part. Both amorphous and semi-crystalline materials are
stretched in the flow field when the temperature becomes higher than the phase-
transition temperature including 7, or 7}, (Figure 9.7 and Figure 9.8). The stretched
chains tend to retract back to their most relaxed state with a globular conforma-
tion. If the material is frozen because of the fast cooling near the surface, the
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strong tendency of the chain to retract causes a larger shrinkage along the flow
direction than perpendicular to it. The difference of shear rate leads to a change of
the orientation through the thickness. The shrinkage thus becomes anisotropic. If
a flow is complex, the shrinkage will not be symmetric across the thickness direc-
tion. This will lead to unpredictable warpage for the part; hence, the first step to
improving warpage is to simplify the flow. Materials with fibers show even more
complex shrinkage behaviors along the direction perpendicular to flow compared
to simple polymer chains, as the shrinkage of fibers is different to that of the resin.
Warpage is even more complex when the cooling rate of a crystalline material dif-
fers, because the induced degree of crystallization and crystalline structure are
different so the shrinkage distribution becomes even more unpredictable.

AN

Semi-crystalline

Figure 9.7 Amorphous and crystalline polymers

Flow

Orientation Relaxation

Figure 9.8 Molecular chain orientation caused by a shear flow of fountain flow

Since fibers cannot be stretched, they respond to shear flow by orientation along
the flow direction. A simple shear flow results in a uniform orientation, but for
fountain flow between the mold walls in injection molding, as shown in Figure 9.9
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and Figure 9.10, fibers tend to align along the flow direction near the surface
whereas they become perpendicular at the center of thickness area. This anisot-
ropy leads to differential shrinkage between the layers of the part. If the orienta-
tion is unsymmetrical between the top and bottom shell layers, non-uniform
shrinkage occurs and the part may start to warp.

Mold FIow direction

pu

Figure 9.9 Fiber orientation caused by fountain flow
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Figure 9.10 Fiber orientation effect on different part shrinkage parallel and perpendicular to
the flow direction

Figure 9.11 shows different warpage behavior of an exemplary ribbed plaque
caused by different flow directions for the ribs. When the melt enters the plaque
parallel to the rib direction, the ribbed half shrinks less so the part shrinks
downward. A flow perpendicular to the rib direction leads to an upward shrinkage
instead.

Apart from the influence of the flow on the orientation of the molecular chains of
the plastic material, the occurrence of warpage is also related to shrinkage behav-
ior. A PVT diagram explains the shrinkage properties of a plastic (Figure 9.12; see
Section 2.3.3 for more details). The crystalline material has a sharper transition
caused by crystallization during cooling and its shrinkage ratio is higher compared
to an amorphous material.
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Figure 9.11 (a) Fiber orientation results in the rib section of a plaque with multiple fins. Two
gate locations lead to either parallel flow or cross flow inside the fin. (b) The dif-
ferent fiber orientation of fin area leads to different warpage patterns
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Figure 9.12 PVT diagrams of crystalline and amorphous plastic materials
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9.1.3 Geometrical Effects

In Chapter 3 of this book ("Part and Mold Design”), we have introduced part design
principles that focus on the part geometrical effect on the flow of plastic as well as
the orientation of molecular chains and fibers, and their result on the anisotropic
shrinkage. More details about geometrical effects on warpage are discussed here.
Since thickness changes in a part are inevitable, the wall thickness needs to be
made as uniform as possible for continuous and gradual change. As shown in Fig-
ure 9.13, a smooth transition reduces the internal stress caused by a discontinuity
of volume shrinkage.

(a) Poor design High Shrinkage

Stepped tran?ition

L L LT

(b) Better Tapered transition
| High cooling rate
| Low crystallization level
Low cooling rate
High crystallization level
(c) Best Gradual t it i
ra ua% ;h;kness changed suddenly 3H
] v = 7707
Core out thicker T Solution
areas when possible T

Figure 9.13 Effect of thickness on warpage: a gradual change of thickness is preferred in
preventing warpage

As cooling is slower for thicker parts, for crystalline plastics, a slower cooling
would generate a higher degree of crystallization in a larger area, which results in
higher shrinkage. For thin parts, a high flow rate and the shear effect lead to a
more significant orientation along the flow direction, which results in a higher in-
ternal stress and more severe warpage.

For a flat plate or box-shaped product, features such as ribs and bosses are often
used to reinforce the part. But, as shown in Figure 9.14, ribs also tend to cause
unpredictable results of warpage. If the spacing between the ribs is too small to
allow enough cooling channels to pass through, the ribbed area would accumulate
heat and induce warpage. For mold makers, it is thus preferred to evaluate the
warpage level from a molding simulation based on the materials used, the gating
location, and the design of the cooling channels.
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— c—

Figure 9.14 Effect of reinforcing rib on warpage: necessary core-out or cooling should be
performed to prevent warpage

Cutting ribs into sections is one way of easing warpage. As shown in the top design
of Figure 9.15, the bottom of the part is thicker, thus having a higher shrinkage.
The thinner ribs do not shrink as much as the bottom so a concave shape is the
result. Below are improvements that can eliminate this warpage, including cutting
off the consecutive plane on the upper part, which restrains the shrinkage, or the
rib can be designed more symmetrically so that the warpage would not be signifi-
cant while the stiffness can still be maintained.

I

1 1L

Figure 9.15 Top: uneven thickness distribution leads to warpage; below: improved rib designs
to eliminate warpage

When fiber-reinforced plastics encounter a change in thickness, a strong elonga-
tional flow orients the fibers as shown in Figure 9.16. The fibers orient better as
the flow passes from thick to thin areas as in a converging flow. The effect of this
stretching in changing the fiber orientations is stronger compared to shear flow.
This is another source of inducing anisotropy into the part apart from shear flow.
Parts gated at the center have a strong diverging flow at the beginning of filling.
This often leads to a bowl- or dome-shaped warpage.
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Figure 9.16 Comparison of fiber orientation during converging and diverging flow

9.1.4 Process Condition Effects

Temperature and pressure are the main causes that induce shrinkage. Six factors
can be defined in comparison to site conditions: melt temperature, mold tempera-
ture, injection speed, packing pressure, packing time, and cooling rate. It is very
difficult to test these six factors by trial and error; therefore, we should first under-
stand how they affect shrinkage.

Normally a reduction of shrinkage can be achieved by lowering the melt tempera-
ture, increasing the packing pressure, and prolonging the packing time, whereas
the mold temperature and injection speed have limited effect on shrinkage. In a
cooling process, the mold temperature would not play a critical role unless a mate-
rial of slow crystallization rate is used, or the mold temperature is too low causing
early cooling and insufficient crystallization. The injection speed affects tempera-
ture and pressure indirectly. Normally the dynamic range of the injection speed of
the machine is not wide, and so is the allowed injection speed range for the part.
Therefore, the injection speed, melt temperature, and pressure can all be managed
within an adjustable range.

The molding parameters of filling should control the rheological behavior of the
plastic material: how much time it needs for filling, and how much pressure should
be used for injection. If the injection pressure cannot be evenly distributed in the
part, a significant difference in volumetric shrinkage will occur despite applying
an excessively high pressure. A localized high injection pressure easily turns into
residual stress which deteriorates the part. An ideal injection process ensures
that enough material enters the cavity and that the subsequent packing pressure
compensates for the shrinkage caused by material cooling. Refer to Chapter 6 for
details regarding the effect of pressure on product shrinkage.

Regarding temperature, the shrinkage grows as the temperature of the melt in-
creases. If the melt temperature is too low, the gate will freeze too early rendering
the subsequent packing useless. The mold temperature can further be controlled
independently via two mold temperature controllers on the two sides of the part
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separately. This allows warpage to be actively controlled by manipulation of the
part shrinkage on both sides. As shown in Figure 9.17, generally the cooling effi-
ciency of the mold core is poor and the shrinkage is high. To solve the problem, the
temperature of the mold core can be lowered to ease the shrinkage, while increas-
ing the temperature of the cavity side for better surface quality.

o o Hot c )
= Part = ;
O 0 O Cod  TTTTTTTTTTTTC
Part warps toward hot surface
Hot
—— Cold

Figure 9.17 Part warpage tendency due to global or localized mold temperature difference

9.1.5 Criteria of CAE Warp Analysis

According to the above principles, CAE can be used for warpage analysis to assess
(1) uniform cooling and mold temperature distribution, (2) effective packing before
gate freezes, (3) shrinkage due to part geometry, (4) fiber orientation effects on
warp, and (5) displacement/flatness prediction:

1. Uniform Cooling and Mold Temperature Distribution

As the cooling channel suitable for both mold cores and mold cavities is different,
the induced difference in cooling efficiency would result in distinct shrinkage. It is
hard to install a cooling channel at the corner of the mold core, and thus the shrink-
age becomes higher. It is thus often seen in box-like parts that the shrinkage at
corners is more serious, showing a concave condition around the corners.

In the Moldex3D software, the “Mold temperature difference” function can be used
to visualize the difference in mold temperature. Generally, a difference is preferred
but which shall maintain a uniform and constant value. The cross-sectional view of
the mold temperature could help the user find the problematic hot spot. As shown
in Figure 9.18(a), the center of this exemplary fan part shows high temperature
even after cooling, which results in notable warpage at the blades (Figure 9.18(b)).
If cooling channels can be applied to this side, the warpage can be reduced.
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(a) (b)

Figure 9.18 (a) Mold temperature cross-section CAE results showing heat accumulation on
the core side, and (b) warpage of the part

2. Effective Packing before Gate Freezes

Gate freezing has a key effect on the success of packing. If the gate seals due to
cooling, even a higher packing pressure will not contribute to the effectiveness of
packing. Therefore, whether the gate is sealed or not should be particularly ob-
served in a simulation analysis. It can be seen from the temperature distribution
chart shown in Figure 9.19 that the high-temperature area (green) locates around
the middle of the runner, while the temperature is lower at the gate and inside the
part, which means that the pressure cannot be effectively transferred into the part
if the packing is done from the right side (Figure 9.19).

Description

Polymer PABS
Grade Name 6210GC
Producer Nan'a
Comment

Last modified date 2010/08/25
Process conditions

Meit temperature (minimum) |270 «C
Meit temperature (normal) 285 *C
Maeit temperature (maximum) 300 *C
Mold temperature (minimum) 60 *C
Mold temperature (normal) 80 *C
Mold temperature (maximum) 100 *C
Ejection temperature 210 *C
Freeze temperature 240 *C

Figure 9.19 Effective packing before gate freezes
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3. Shrinkage Due to Part Geometry

Shrinkage difference due to the thickness and geometry characteristics of a part
can also affect how a molded part warps. Figure 9.20 shows a slicing of volumetric
shrinkage extracted from Moldex3D for a connector case, where its thickness is
distributed unevenly. Thicker sections have larger volumetric shrinkage than
thinner regions, because heat accumulates more easily in the thicker section, as it
is more difficult for cooling to reach the middle area. Because of the uneven thick-
ness distribution, the volumetric shrinkage varies. Therefore, a well-considered
part design is an essential point to prevent product warpage.

Smaller
shrinkage in
thinner region

Greater
shrinkage in
thicker region
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Figure 9.20 Shrinkage difference: thickness and geometry characteristics

4. Fiber Orientation Effects on Warp

As fiber orientation due to flowing creates anisotropic properties in the material,
anisotropic shrinkage and warpage are thus generated. The fiber orientation effect
can be verified by CAE. Fibers tend to align in the flow (forward) direction, espe-
cially in the area close to the mold wall. Shrinkage along the forward direction of
fiber orientation is relatively smaller. If fibers are aligned well, the shrinkage along
the long axis (forward) becomes smaller; if not, shrinkage would be similar in both
directions. A randomized fiber orientation has a more uniform shrinkage along
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and cross-flow direction compared to the aligned one with an anisotropic shrink-
age, as shown in Figure 9.21.

> Highly oriented

Low shrinkage

—— S S S — — Highshrinkage

Moderate shrinkage

\
\

Figure 9.21 Highly-oriented and randomized fiber orientation, and corresponding shrinkage

Figure 9.22 shows a poor orientation of the fibers on the top half of the part, lead-
ing to isotropic shrinkage, but on the bottom part the fibers are highly oriented
giving rise to strong anisotropic shrinkage. However, as the shrinkage along the
direction of flow is smaller, we can see as a final result that the shrinkage on the
bottom part is small, whereas that on the top half is large, causing the part to warp
upward.
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